COVID-19 Treatment Algorithms

D-dimer is just a marker of increased risk for thrombosis. This is not an absolute threshold as increased risk is seen even at lower levels. This risk likely persists beyond the single lab value falling below this threshold. We would favor continuing thromboprophylaxis with the more intense regimen, assuming acceptable bleeding risk. However, it is important to look at the patient as a whole and consider other clinical features.
The use of a D-Dimer cut-off of 2000 is somewhat arbitrary; this value was chosen given that it was >8 times the upper limit of normal and elevations such as this are associated with increased thrombosis risk.
In addition to the D-dimer level, other clinical features may help to predict risk of thrombosis, including disease severity and location of care. There is also an increased risk in those with moderate to severe disease severity [such as those with PaO2/FiO2 < or = 300 mmHg, SIC (or sepsis induce coagulopathy) score > or =4, or elevated SOFA score) or those requiring intensive unit level care. The incorporation of these clinical features may help guide to the preferred prophylaxis regimen.
The use of the higher intensity prophylaxis regimen is based upon the observation of a high rate of VTE despite use of standard prophylaxis regimen in patients with more severe COVID disease (including those with elevated D-dimer). This approach has not been proven to be effective but is common practice. It should not be used in those with a bleeding risk that is deemed to be unacceptable or too high. As is always the case with initiating any anticoagulation, even prophylaxis, the potential benefits need to be weighed against the risk. In this case, the use of either standard prophylaxis options (either chemical or mechanical) may be considered based upon the magnitude of the bleeding risk. Risks and benefits of anticoagulation should be re-assessed daily.
This may be based upon the risk category in combination with other clinical features. There is limited guidance as its use is an extrapolation of data from other situations. It is unlikely that patients at low risk will benefit from extending prophylaxis beyond discharge. This is in contrast to patients in the “high risk group” who have an established indication for therapeutic anticoagulation (with the exception of patients on anticoagulation for HD/CVVHD clotting).
The uncertainty is primarily in the intermediate risk group. Our suggestion is that clinicians “may consider extended prophylaxis for 4 weeks upon discharge (potential agent apixaban 2.5 mg twice daily)”. This, however, remains a clinical decision that requires consideration of other issues such as the severity of illness during hospitalization and upon discharge, comorbidities, patient mobility, and bleeding risk. One should consider all these factors in estimating risks and benefits while making a decision for an individual patient. It is anticipated that most patients in this risk category will be reasonable candidates for this approach.
69 patients with severe COVID-19, subjects presented with a significantly increased baseline IL-6 (compared to their post-treatment levels of IL-6) which was correlated to the patient’s body temperature, CRP, LDH, ferritin, and D-dimer. It is suggested that baseline levels of IL-6 is correlated to the severity of the disease. The tendency showed that the lower the IL-6 level, the shorter the time from symptom onset to cure of the disease. Also, there was a tendency for the higher IL-6 levels to have a shorter lapse from symptom onset to pneumonia diagnosis. Remission of the disease presented with lower levels of IL-6.
You can send your manuscript at https://bit.ly/2GFUS3A
Media Contact:
Lina James
Managing Editor
Mail Id: computersci@scholarlypub.com
American Journal of Computer Science and Information Technology
Whatsapp number: + 1-504-608-2390